36,397 research outputs found

    Methods of resistance estimation in permanent magnet synchronous motors for real-time thermal management

    Get PDF
    Real-time thermal management of electrical ma- chines relies on sufficiently accurate indicators of internal tem- perature. One indicator of temperature in a permanent-magnet synchronous motor (PMSM) is the stator winding resistance. Detection of PMSM winding resistance in the literature has been made on machines with relatively high resistances, where the resistive voltage vector is significant under load. This paper describes two techniques which can be applied to detect the winding resistance, through ‘Fixed Angle’ and ‘Fixed Mag- nitude’ current injection. Two further methods are described which discriminate injected current and voltages from motoring currents and voltages: ‘Unipolar’ and ‘Bipolar’ separation. These enable the resistance to be determined, and hence the winding temperature in permanent-magnet machines. These methods can be applied under load, and in a manner that does not disturb motor torque or speed. The method distinguishes between changes in the electro-motive force (EMF) constant and the resistive voltage. This paper introduces the techniques, whilst a companion paper covers the application of one of the methods to a PMSM drive system

    Imaging the Near Field

    Full text link
    In an earlier paper we introduced the concept of the perfect lens which focuses both near and far electromagnetic fields, hence attaining perfect resolution. Here we consider refinements of the original prescription designed to overcome the limitations of imperfect materials. In particular we show that a multi-layer stack of positive and negative refractive media is less sensitive to imperfections. It has the novel property of behaving like a fibre-optic bundle but one that acts on the near field, not just the radiative component. The effects of retardation are included and minimized by making the slabs thinner. Absorption then dominates image resolution in the near-field. The deleterious effects of absorption in the metal are reduced for thinner layers.Comment: RevTeX, (9 pages, 8 figures

    Relationship between resistivity and specific heat in a canonical non-magnetic heavy fermion alloy system: UPt_5-xAu_x

    Full text link
    UPt_(5-x)Au_x alloys form in a single crystal structure, cubic AuBe_5-type, over a wide range of concentrations from x = 0 to at least x = 2.5. All investigated alloys, with an exception for x = 2.5, were non-magnetic. Their electronic specific heat coefficient γ\gamma varies from about 60 (x = 2) to about 700 mJ/mol K^2 (x = 1). The electrical resistivity for all alloys has a Fermi-liquid-like temperature variation, \rho = \rho_o + AT^2, in the limit of T -> 0 K. The coefficient A is strongly enhanced in the heavy-fermion regime in comparison with normal and transition metals. It changes from about 0.01 (x = 0) to over 2 micro-ohm cm/K^2 (x = 1). A/\gamma^2, which has been postulated to have a universal value for heavy-fermions, varies from about 10^-6 (x = 0, 0.5) to 10^-5 micro-ohm cm (mol K/mJ)^2 (x > 1.1), thus from a value typical of transition metals to that found for some other heavy-fermion metals. This ratio is unaffected, or only weakly affected, by chemical or crystallographic disorder. It correlates with the paramagnetic Curie-Weiss temperature of the high temperature magnetic susceptibility.Comment: 5 pages, 5 eps figures, RevTe

    Millisecond accuracy video display using OpenGL under Linux

    Get PDF
    To measure people’s reaction times to the nearest millisecond, it is necessary to know exactly when a stimulus is displayed. This article describes how to display stimuli with millisecond accuracy on a normal CRT monitor, using a PC running Linux. A simple C program is presented to illustrate how this may be done within X Windows using the OpenGL rendering system. A test of this system is reported that demonstrates that stimuli may be consistently displayed with millisecond accuracy. An algorithm is presented that allows the exact time of stimulus presentation to be deduced, even if there are relatively large errors in measuring the display time

    Comparison of the relative merits of the 3-5 um and the 8-12 um wavebands using detected thermal contrast

    Get PDF
    When detected thermal contrast is used as the thermal figure of merit the 3-5 um waveband is found to give the better performance for both thermal and quantum detectors

    Archimedean-type force in a cosmic dark fluid: II. Qualitative and numerical study of a multistage Universe expansion

    Get PDF
    In this (second) part of the work we present the results of numerical and qualitative analysis, based on a new model of the Archimedean-type interaction between dark matter and dark energy. The Archimedean-type force is linear in the four-gradient of the dark energy pressure and plays a role of self-regulator of the energy redistribution in a cosmic dark fluid. Because of the Archimedean-type interaction the cosmological evolution is shown to have a multistage character. Depending on the choice of the values of the model guiding parameters,the Universe's expansion is shown to be perpetually accelerated, periodic or quasiperiodic with finite number of deceleration/acceleration epochs. We distinguished the models, which can be definitely characterized by the inflation in the early Universe, by the late-time accelerated expansion and nonsingular behavior in intermediate epochs, and classified them with respect to a number of transition points. Transition points appear, when the acceleration parameter changes the sign, providing the natural partition of the Universe's history into epochs of accelerated and decelerated expansion. The strategy and results of numerical calculations are advocated by the qualitative analysis of the instantaneous phase portraits of the dynamic system associated with the key equation for the dark energy pressure evolution.Comment: 15 pages, 12 figures, Part II, typos corrected, Fig.4 replaced, references correcte

    A PC parallel port button box provides millisecond response time accuracy under Linux

    Get PDF
    For psychologists, it is sometimes necessary to measure people's reaction times to the nearest millisecond. This article describes how to use the PC parallel port to receive signals from a button box to achieve millisecond response time accuracy. The workings of the parallel port, the corresponding port addresses, and a simple Linux program for controlling the port are described. A test of the speed and reliability of button box signal detection is reported. If the reader is moderately familiar with Linux, this article should provide sufficient instruction for him or her to build and test his or her own parallel port button box. This article also describes how the parallel port could be used to control an external apparatus
    corecore